55 research outputs found

    The future of mesenchymal stem cell-based therapeutic approaches for cancer – From cells to ghosts

    Get PDF
    Mesenchymal stem cells (MSCs) are multipotent stromal cells which can differentiate into a variety of cell types including osteoblasts, adipocytes and chondrocytes. They are normally resident in adipose tissue, bone marrow and the umbilical cord, but can also be found in other tissues and are known to be recruited to sites of wound healing as well as growing tumours. The therapeutic potential of MSCs has been explored in a number of phase I/II and III clinical trials, of which several were targeted against graft-versus-host disease and to support engraftment of haematopoietic stem cells (HSCs), but currently only very few in the oncology field. There are now three clinical trials either ongoing or recruiting patients that use MSCs to treat tumour disease. In these, MSCs target gastrointestinal, lung and ovarian cancer, respectively. The first study uses MSCs loaded with a HSV-TK expression construct under the control of the CCL5 promoter, and has recently reported successful completion of Phase I/II. While no adverse side effects were seen during this study, no outcomes with respect to therapeutic benefits have been published. The other clinical trials targeting lung and ovarian cancer will be using MSCs expressing cytokines as therapeutic payload. Despite these encouraging early steps towards their clinical use, many questions are still unanswered regarding the biology of MSCs in normal and pathophysiological settings. In this review, in addition to summarising the current state of MSC-based therapeutic approaches for cancer, we will describe the remaining questions, obstacles and risks, as well as novel developments such as MSC-derived nanoghosts

    The antiandrogen enzalutamide downregulates TMPRSS2 and reduces cellular entry of SARS-CoV-2 in human lung cells

    Get PDF
    SARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19

    A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells

    Get PDF
    Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion

    Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects

    Get PDF
    Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL DR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL DR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments. © 2013 Macmillan Publishers Limited All rights reserved

    Lymphocyte Modulation with FTY720 Improves Hemorrhagic Shock Survival in Swine

    Get PDF
    The inflammatory response to severe traumatic injury results in significant morbidity and mortality. Lymphocytes have recently been identified as critical mediators of the early innate immune response to ischemia-reperfusion injury. Experimental manipulation of lymphocytes following hemorrhagic shock may prevent secondary immunologic injury in surgical and trauma patients. The objective of this study is to evaluate the lymphocyte sequestration agent FTY720 as an immunomodulator following experimental hemorrhagic shock in a swine liver injury model. Yorkshire swine were anesthetized and underwent a grade III liver injury with uncontrolled hemorrhage to induce hemorrhagic shock. Experimental groups were treated with a lymphocyte sequestration agent, FTY720, (n = 9) and compared to a vehicle control group (n = 9). Animals were observed over a 3 day survival period after hemorrhage. Circulating total leukocyte and neutrophil counts were measured. Central lymphocytes were evaluated with mesenteric lymph node and spleen immunohistochemistry (IHC) staining for CD3. Lung tissue infiltrating neutrophils were analyzed with myeloperoxidase (MPO) IHC staining. Relevant immune-related gene expression from liver tissue was quantified using RT-PCR. The overall survival was 22.2% in the vehicle control and 66.7% in the FTY720 groups (p = 0.081), and reperfusion survival (period after hemorrhage) was 25% in the vehicle control and 75% in the FTY720 groups (p = 0.047). CD3+ lymphocytes were significantly increased in mesenteric lymph nodes and spleen in the FTY720 group compared to vehicle control, indicating central lymphocyte sequestration. Lymphocyte disruption significantly decreased circulating and lung tissue infiltrating neutrophils, and decreased expression of liver immune-related gene expression in the FTY720 treated group. There were no observed infectious or wound healing complications. Lymphocyte sequestration with FTY720 improves survival in experimental hemorrhagic shock using a porcine liver injury model. These results support a novel and clinically relevant lymphocyte immunomodulation strategy to ameliorate secondary immune injury in hemorrhagic shock

    Ischemia of the lung causes extensive long-term pulmonary injury: an experimental study

    Get PDF
    Background: Lung ischemia-reperfusion injury (LIRI) is suggested to be a major risk factor for development of primary acute graft failure (PAGF) following lung transplantation, although other factors have been found to interplay with LIRI. The question whether LIRI exclusively results in PAGF seems difficult to answer, which is partly due to the lack of a long-term experimental LIRI model, in which PAGF changes can be studied. In addition, the long-term effects of LIRI are unclear and a detailed description of the immunological changes over time after LIRI is missing. Therefore our purpose was to establish a long-term experimental model of LIRI, and to study the impact of LIRI on the development of PAGF, using a broad spectrum of LIRI parameters including leukocyte kinetics.Methods: Male Sprague-Dawley rats (n = 135) were subjected to 120 minutes of left lung warm ischemia or were sham-operated. A third group served as healthy controls. Animals were sacrificed 1, 3, 7, 30 or 90 days after surgery. Blood gas values, lung compliance, surfactant conversion, capillary permeability, and the presence of MMP-2 and MMP-9 in broncho-alveolar-lavage flui

    Acute Liver Injury Is Independent of B Cells or Immunoglobulin M

    Get PDF
    Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM) play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury) and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM) were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury). Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66), despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/-) mice (p<0.001), but not B cell deficient (μMT) mice (p = 0.93), were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO) mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key mediators of injury. In conclusion, the therapeutic targeting of IgM or B cells (e.g. with Rituximab) would have limited benefit in protecting patients from acute liver injury

    In situ trapping of initiator caspases reveals intermediate surprises

    No full text
    A novel method to identify initiator caspases is an in situ trapping approach using a cell-permeable biotinylated caspase inhibitor valine-alanine-aspartate-fluoromethyl ketone (bVAD) that binds covalently and irreversibly to the active cysteine site of caspases. This inhibits apoptosis and should allow precipitation of initiator caspases in their uncleaved forms. However, in our experiments TRAIL and FasL-induced apoptosis and bVAD labelling did not result in streptavidin precipitation of the procaspase-8 forms, but led to the pull-down of the intermediate and to a lesser extent fully cleaved forms (p41/43 and p18). These findings are contrary to other reports and are of relevance to apoptosis research as they challenge the general concept of the bVAD approach that procaspases are being trapped. We show that (partially) processed forms of initiator caspases rather than procaspases might be precipitated with this method. © 2006 International Federation for Cell Biology

    Reactive oxygen species in oncogenic transformation

    No full text
    Ever since ROS (reactive oxygen species) were shown to meet the criteria of true signalling molecules, such as regulated production and a specific biological function, many efforts have been made to understand the precise role of ROS. The function of ROS in pathological mechanisms is taking a more and more central role in various fields of biomedical research, including neurobiology, cardiology and cancer. An elevated oxidative status has been found in many types of cancer cells, and the introduction of chemical and enzymological antioxidants can inhibit tumour cell proliferation, pointing to a critical role of ROS in mediating loss of growth control. The present review describes ROS-regulated mechanisms that are associated with cancer and tumour invasiveness. The cellular processes that are linked to these ROS functions are mitogenic signalling and cell motility, while ROS have also been implicated in apoptosis and cellular senescence, two mechanisms regarded as being anti-tumorigenic. This ‘two-faced’ character of free radicals will be discussed and placed in the context of the physiological conditions of the tumour cell, the different molecular backgrounds, and the specific ROS. More detailed understanding of the signalling pathways regulated by ROS in tumour cells will open up new prospects for chemo- or gene-therapeutic interventions.</jats:p
    • …
    corecore